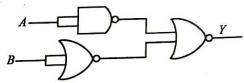

Physics: Section-A (Q. No. 1 to 35)

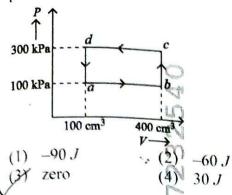
- 1 A bob is whirled in a horizontal plane by means of a string with an initial speed of ω rpm. The tension in the string is T. If speed becomes 2ω while keeping the same radius, the tension in the string becomes:
- (3) T
- A horizontal force 10 N is applied to a block A as 2 shown in figure. The mass of blocks A and B are 2 kg and 3 kg, respectively. The blocks slide over a frictionless surface. The force exerted by block A on block B is:



- (2) 10 N
- (3) zero
- (4) 4 N
- The maximum elongation of a steel wire of 1 m 3 length if the elastic limit of steel and its Young's modulus, respectively, are 8×10^8 N m⁻² and $2 \times 10^{11} \text{ N m}^{-2}$, is:
 - (1) 40 mm
- (2) 8 mm
- (3) 4 mm
- (4) 0.4 mm
- In a uniform magnetic field of 0.049 T, a magnetic 4 needle performs 20 complete oscillations in 5 seconds as shown. The moment of inertia of the needle is 9.8×10^{-6} kg m². If the magnitude of magnetic moment of the needle is $x \times 10^{-5}$ Am²; then the value of 'x' is:

- If c is the velocity of light in free space, the correct statements about photon among the following are:
 - The energy of a photon is E = hv. ٨.
 - The velocity of a photon is c. B.
 - The momentum of a photon, $p = \frac{hv}{c}$. C.
 - In a photon-electron collision, both total energy and total momentum are conserved. D.
 - Photon possesses positive charge. E.

- (1) A, C and D only
- (2) A, B, D and E only
- (3) A and B only
- (4) A, B, C and D only
- The output (Y) of the given logic gate is similar 6 to the output of an/a:

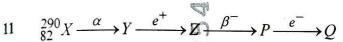


- (1) OR gate
- (2) AND gate
- (3) NAND gate
- (4) NOR gate
- Consider the following statements A and B and 7 identify the correct answer:

$$\begin{array}{c|c}
I \\
\hline
(II) \\
\hline
(III) \\
\hline
(IV)
\end{array}$$

- For a solar-cell, the I-V characteristics lies in the IV quadrant of the given graph.
- In a reverse biased pn junction diode, the B. current measured in (μA) , is due to majority charge carriers.
- (1) Both A and B are correct.
- (2) Both A and B are incorrect.
- (3) A is correct but B is incorrect.
- (4) A is incorrect but B is correct.

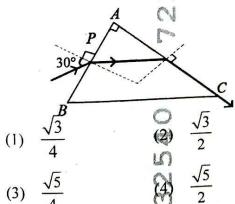
A thermodynamic system is taken through the 8 cycle abcda. The work done by the gas along the path bc is:



A thin flat circular disc of radius 4.5 cm is placed gently over the surface of water. If surface tension of water is 0.07 Nm⁻¹, then the excess force required to take it away from the surface is:

- (1) 1.98 mN
- 99 N
- (3) 19.8 mN
- 198 N

At any instant of time to the displacement of any 10 particle is given by 21 (SI unit) under the influence of force of 5N. The value of instantaneous power is (in SI unit):


- (1) 7
- (2)
- (3) 10

In the nuclear emission stated above, the mass number and atomic number of the product Q respectively, are:

- (1) 288, 82
- (2) 286, 81
- (3) 280, 81
- (4) 286, 80

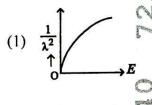
A light ray enters through a right angled prism at 12 point P with the angle of incidence 30° as shown in figure. It travels through the prism parallel to its base BC and emerges along the face AC. The refractive index of the prism is:

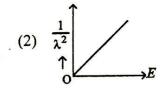
13 Solenoid - 2

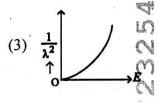
> In the above diagram, a strong bar magnet is moving towards solenoid-2 from solenoid-1. The direction of induced current in solenoid-1 and that in solenoid-2, respectively, are through the directions:

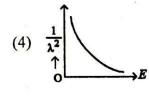
- (1) AB and CD
- (2) BA and DC
- AB and DC

Solenoid - 1


(4) BA and CD


In an ideal transformer, the turns ratio is $\frac{N_p}{N_s} = \frac{1}{2}$. 14


The ratio $V_s: V_p$ is equal to (the symbols carry their usual meaning);


- (1) 1:1
- \bigcirc (2) 1:4
- (3) 1:2
- (4) 2:1

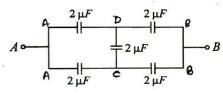
The graph which shows the variation of $\left(\frac{1}{\lambda^2}\right)$ 15 and its kinetic energy, E is (where λ is de Broglie wavelength of a free particle):

If the monochromatic source in Young's double 16 slit experiment is replaced by white light, then

- (1) there will be a central bright white fringe surrounded by a few coloured fringes.
- (2) all bright fringes will be of equal width.
- (3) interference pattern will disappear.
- there will be a central dark fringe surrounded by a few coloured fringes.

17 Given below are two statements: one is labelled as **Assertion A** and the other is labelled as **Reason R**.

Assertion A: The potential (V) at any axial point, at 2 m distance(r) from the centre of the dipole of dipole moment vector \overrightarrow{P} of magnitude, 4×10^{-6} C m, is $\pm 9 \times 10^3$ V.


(Take
$$\frac{1}{4\pi \in_0} = 9 \times 10^9$$
 SI units)

Reason R:
$$V = \pm \frac{2P}{4\pi \in_0 r^2}$$
, where r is the

distance of any axial point, situated at 2 m from the centre of the dipole.

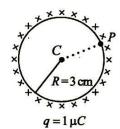
In the light of the above statements, choose the *correct* answer from the options given below:

- (1) A is true but R is false.
- (2) A is false but R is true.
- (3) Both A and R are true and R is the correct explanation of A.
- (4) Both A and R are true and R is NOT the correct explanation of A.
- Two bodies A and B of same mass undergo completely inelastic one dimensional collision. The body A moves with velocity v_1 while body B is at rest before collision. The velocity of the system after collision is v_2 . The ratio $v_1 : v_2$ is:
 - (1) 4:1
- $(2)^{2}$ 1:4
- (3) 1:2
- VAY 2:1
- In the following circuit, the equivalent capacitance between terminal A and terminal B is:

- (1) $0.5 \,\mu F$
- (2) $4 \mu F$
- $\sqrt{3}$ 2 μF
- $(4) 1 \mu F$
- The quantities which have the same dimensions as those of solid angle are:
- (1) strain and arc
 - (2) angular speed and stress
 - (3) strain and angle
 - (4) stress and angle

A logic circuit provides the output Y as per the following truth table:

A	B	Y
0	0	1
0	1	0
1	0	1
1	1	0


The expression for the output Y is:

- $\mathcal{J}()$ \overline{L}
- (2) B
- (3) $A.B + \overline{A}$
- (4) $A.\overline{B} + \overline{A}$
- A thin spherical shell is charged by some source.

 The potential difference between the two points

 C and P (in V) shown in the figure is:

(Take
$$\frac{1}{4\pi \in_0} = 9 \times 10^9$$
 SI units)

- (1) 0.5×10^5
- (2) zero
- (3) 3 × 10⁵
- (4) 1×10^5
- 23 Given below are two statements:

Statement I: Atoms are electrically neutral as they contain equal number of positive and negative charges.

Statement II: Atoms of each element are stable and emit their characteristic spectrum.

In the light of the above statements, choose the *most appropriate* answer from the options given below:

- Statement I is correct but Statement II is incorrect.
- (2) Statement I is incorrect but Statement II is correct.
- (3) Both Statement I and Statement II are correct.
- (4) Both Statement I and Statement II are incorrect.

24 Match List I with List II.

List 1

List II

(Spectral Lines of

(Wavelengths (nm))

Hydrogen for

transitions from)

A.
$$n_2 = 3$$
 to $n_1 = 2$

B.
$$n_2 = 4$$
 to $n_1 = 2$

C.
$$n_2 = 5$$
 to $n_1 = 2$

D.
$$n_2 = 6$$
 to $n_1 = 2$

Choose the correct answer from the options given below:

- (1) A-IV, B-III, C-I, D-II
- (2) A-I, B-II, C-III, D-IV
- (3) A-II, B-I, C-IV, D-III
- (4) A-III, B-IV, C-II, D-I
- 25 If $x = 5\sin\left(\pi t + \frac{\pi}{3}\right)m$ represents the motion of a

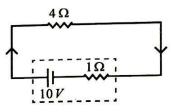
particle executing simple harmonic motion, the amplitude and time period of motion, respectively, are:

- (1) 5 cm, 1 s
- (2) 5 m, 1 s
- (3) 5 cm, 2 s
- (4) 5 m, 2 s
- 26 Match List-I with List-II.

List-I

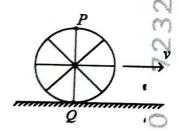
List-II

(Material)

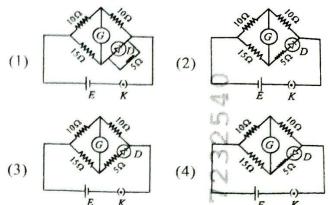

(Susceptibility (χ))

- A. Diamagnetic
- I. $\chi = 0$
- B. Ferromagnetic
- II. $0 > \chi \ge -1$
- C. Paramagnetic
- III. $\chi \gg 1$
- D. Non-magnetic
- IV. $0 < \chi < \epsilon$ (a small

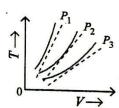
positive number)


- (1) A-III, B-II, C-I, D-IV
- (2) A-IV, B-III, C-II, D-I
- (3) A-II, B-III, C-IV, D-I
- (4) A-II, B-I, C-III, D-IV

- A wire of length 'l' and resistance 100 Ω is divided into 10 equal parts. The first 5 parts are connected in series while the next 5 parts are connected in parallel. The two combinations are again connected in series. The resistance of this final combination is:
 - (1) 55Ω
- (2) 60Ω
- (3) 26Ω
- (4) 52Ω
- The terminal voltage of the battery, whose emf is 10V and internal resistance 1Ω , when connected through an external resistance of 4Ω as shown in the figure is:


- (1) 8V
- (2) 10 V
- (3) 4 V
- (4) 6 V
- A particle moving with uniform speed in a circular path maintains:
 - (1) constant velocity but varying acceleration.
 - varying velocity and varying acceleration.
 - (3) constant velocity.
 - (4) constant acceleration.
- 30 A tightly wound 100 turns coil of radius 10 cm carries a current of 7 A. The magnitude of the magnetic field at the centre of the coil is (Take permeability of free space as $4\pi \times 10^{-7}$ SI units):
 - (1) 4.4 mT
- (2) 44.T
- (3) 44 mT
- (4) 4.4 T
- In a vernier calipers, (N+1) divisions of vernier scale coincide with N divisions of main scale. If 1 MSD represents 0.1 mm, the vernier constant (in cm) is:
 - (1) 100N
- (2) 10(N+1)
- $(3) \quad \frac{1}{10N}$
- (4) $\frac{1}{100(N+1)}$

- 32 An unpolarised light beam strikes a glass surface at Brewster's angle. Then
 - (1) both the reflected and refracted light will be completely polarised.
 - (2) the reflected light will be completely polarised but the refracted light will be partially polarised.
 - (3) the reflected light will be partially polarised.
 - (4) the refracted tight will be completely polarised.
- 33 The mass of a planet is $\frac{1}{10}$ that of the earth and its diameter is half that of the earth. The acceleration due to gravity on that planet is:
 - (1) 4.9 m s^{-2}
- (2) 3.92 m s⁻²
- (3) 19.6 m s^{-2} (4) 9.8 m s^{-2}
- A wheel of a bullock cart is rolling on a level 34 road as shown in the figure below. If its linear speed is v in the direction shown, which one of the following options is correct (P and Q are any highest and lowest points on the wheel, respectively)?



- (1) Both the points P and Q move with equal speed.
- (2) Point P has zero speed.
- Point P moves slower than point Q.
- Point P moves faster than point Q.
- The moment of inertia of a thin rod about an axis 35 passing through its mid point and perpendicular to the rod is 2400 g cm². The length of the 400 g rod is nearly:
 - (1) 20.7 cm
- (2) 72.0 cm
- 8.5 cm
- (4) 17.5 cm
- '5 English]

- Physics: Section-B (Q. No. 36 to 50)
- 36 Choose the correct circuit which can achieve the bridge balance.

- 37 A parallel plate capacitor is charged by connecting it to a battery through a resistor, If I is the current in the circuit, then in the gap between the plates :
 - (1) displacement current of magnitude equal to I flows in a direction opposite to that of I.
 - (2) displacement current of magnitude greater than I flows but can be in any direction.
 - (3)there is no current.
 - (4) displacement current of magnitude equal to I flows in the same direction as I.
- 38 The following graph represents the T-V curves of an ideal gas (where T is the temperature and Vthe volume) at three pressures P_1 , P_2 and P_3 compared with those of Charles's law represented as dotted lines.

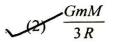
Then the correct relation is:

- (1) $P_2 > P_1 > P_3$ (2) $P_1 > P_2 > P_3$
- (3) $P_3 > P_2 > P_1$ (4) $P_1 > P_3 > P_2$
- 39 If the mass of the bob in a simple pendulum is increased to thrice its original mass and its length is made half its original length, then the new time

period of oscillation is $\frac{x}{2}$ times its original time period. Then the value of x is:

- (1) $2\sqrt{3}$
- (3) $\sqrt{3}$

6


- Two heaters A and B have power rating of 1 kW and 2 kW, respectively. Those two are first connected in series and then in parallel to a fixed power source. The ratio of power outputs for these two cases is:
 - (1) 1:2
- (2) 2:3
- (3) 1:1
- (4) 2:9
- If the plates of a parallel plate capacitor connected to a battery are moved close to each other, then
 - A. the charge stored in it, increases.
 - B. the energy stored in it, decreases.
 - C. its capacitance increases.
 - D. the ratio of charge to its potential remains the same.
 - E. the product of charge and voltage increases. Choose the most appropriate answer from the options given below:
 - (1) B, D and E only (2) A, B and C only
 - (3) A, B and E only (4) A, C and E only
- A small telescope has an objective of focal length 140 cm and an eye piece of focal length 5.0 cm. The magnifying power of telescope for viewing a distant object is:
 - (1) 17
- (2) 32
- (3) 34
- (4) 28
- A sheet is placed on a horizontal surface in front of a strong magnetic pole. A force is needed to:
 - A. hold the sheet there if it is magnetic.
 - B. hold the sheet there if it is non-magnetic.
 - move the sheet away from the pole with uniform velocity if it is conducting.
 - D. move the sheet away from the pole with uniform velocity if it is both, non-conducting and non-polar.

Choose the correct statement(s) from the options given below:

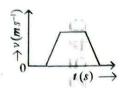
- (1) A, C and D only
- (2) C only
- (3) B and D only
- (4) A and C only

- A metallic bar of Young's modulus, $0.5 \times 10^{11} \,\mathrm{N}\,\mathrm{m}^{-2}$ and coefficient of linear thermal expansion $10^{-5}\,\mathrm{^oC}^{-1}$, length 1 m and area of cross-section $10^{-3}\,\mathrm{m}^2$ is heated from $0^{\mathrm{o}}\mathrm{C}$ to $100^{\mathrm{o}}\mathrm{C}$ without expansion or bending. The compressive force developed in it is:
 - (1) $100 \times 10^3 \text{ N}$
- (2) $2 \times 10^3 \text{ N}$
 - (3) $5 \times 10^3 \text{ N}$
 - (4) $50 \times 10^3 \text{ N}$
- The minimum energy required to launch a satellite of mass m from the surface of earth of mass M and radius R in a circular orbit at an altitude of 2R from the surface of the earth is:

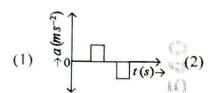
$$(1) \quad \frac{GmM}{2R}$$

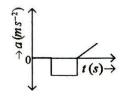
$$(3) \quad \frac{5GmM}{6R}$$

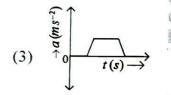
$$(4) \quad \frac{2GmM}{3R}$$

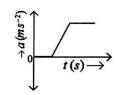

A 10 μ F capacitor is connected to a 210 V, 50 Hz source as shown in figure. The peak current in the circuit is nearly ($\pi = 3.14$):

$$C = 10 \,\mu$$


$$C = 10 \,V, 50 \,Hz$$


- (1) 1.20 A
- (2) 0.35 A
- (3) 0.58 A
- $(4) \quad 0.93 A$
- An iron bar of length L has magnetic moment M. It is bent at the middle of its length such that the two arms make an angle 60° with each other. The magnetic moment of this new magnet is:
 - (1) 2 M
- $(2) \quad \frac{M}{\sqrt{3}}$
- (3) M
- $_{\circ}$ (4) $\frac{N}{2}$


The velocity (v) – time (t) plot of the motion of a body is shown below:



The acceleration (a) – time (t) graph that best suits this motion is:

- The property which is not of an electromagnetic wave travelling in free space is that:
 - (1) they travel with a speed equal to $\frac{1}{\sqrt{\mu_0 \in_0}}$.

明二月

- (2) they originate from charges moving with uniform speed.
- (3) they are transverse in nature.
- (4) the energy density in electric field is equal to energy density in magnetic field.
- 50 A force defined by $F = \alpha t^2 + \beta t$ acts on a particle at a given time t. The factor which is dimensionless, if α and β are constants, is:
 - (1) $\alpha\beta t$
- (2) $\alpha\beta/t$
- (3) $\frac{\beta t}{\alpha}$
- μ $\alpha l/\beta$

Chemistry: Section-A (Q. No. 51 to 85)

- In which of the following processes entropy increases?
 - A. A liquid evaporates to vapour.
 - B. Temperature of a crystalline solid lowered from 130 K to 0 K.
 - C. 2 NaHCO_{3(s)} \rightarrow Na₂CO_{3(s)} + CO_{2(g)} + H₂O_(g)
 - D. $Cl_{2(g)} \rightarrow 2 Cl_{(g)}$

- (1) A, C and D
- (2) C and D
- (3) A and C
- (4) A, B and D
- On heating, some solid substances change from solid to vapour state without passing through liquid state. The technique used for the purification of such solid substances based on the above principle is known as
 - (1) Distillation
 - (2) Chromatography
 - (3) Crystallization
 - (4) Sublimation
- 53 Identify the correct reagents that would bring about the following transformation.

$$CH_2 - CH = CH_2 \rightarrow CH_2 - CH_2 - CH_2 - CH_2$$

- (1) (i) BH₃
 - (ii) H_2O_2/OH
 - (iii) alk. KMnO₄
 - (iv) H₃O[⊕]
- (2) (i) H_2O/H^+
 - (ii) PCC
- (3) (i) H_2O/H^+
 - (ii) CrO₃
- (4) (i) BH₃
 - (ii) H_2O_2/OH
 - (iii) PCC

The energy of an electron in the ground state (n = 1) for He⁺ ion is -x J, then that for an electron in n = 2 state for Be³⁺ ion in J is:

No Pe

$$(1) - 4x$$

(2)
$$-\frac{4}{9}x$$

$$\sqrt{2}$$
 $-x$

(4)
$$-\frac{x}{9}$$

Match List I with List II.

List I

List II

(Molecule)

Number and types of

bond/s between two

(carbon atoms)

A. ethane

De la Contraction de la Contra one σ -bond and

two π -bonds

B. ethene

II. two π -bonds

C. carbon

III. one σ-bond

molecule, C2

D. ethyne

CIV. one σ -bond and

one π -bond

Choose the correct answer from the options given below:

LIT

(I) A-III, B-IV, C-II, D-I

- (2) A-III, B-IV, C-I, D-II
- (3) A-I, B-IV, C-II, D-III
- (4) A-IV, B-III, C-II, D-I
- For the reaction $2A \rightleftharpoons B+C$, $K_c = 4 \times 10^{-3}$. At a 56 given time, the composition of reaction mixture

is:
$$[A] = [B] = [C] = 2 \times 10^{-3} M$$
.

Then, which of the following is correct?

- Reaction has a tendency to go in backward direction.
 - (2) Reaction has gone to completion in forward direction.
 - (3) Reaction is at equilibrium.
 - (4) Reaction has a tendency to go in forward direction.

- The E° value for the Mn³⁺/Mn²⁺ couple is more positive than that of Cr^{3+}/Cr^{2+} or Fe^{3+}/Fe^{2+} due to change of
 - d⁴ to d⁵ configuration
 - (2) d³ to d⁵ configuration
 - (3) d⁵ to d⁴ configuration
 - (4) d⁵ to d² configuration
- Given below are two statements: 58

Statement I: The boiling point of hydrides of Group 16 elements follow the order

 $H_2O > H_2Te > H_2Se > H_2S$.

Statement II: On the basis of molecular mass, H₂O is expected to have lower boiling point than the other members of the group but due to the presence of extensive H-bonding in H2O, it has higher boiling point.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is true but Statement II is false.
- (2) Statement I is false but Statement II is true.
- (3) Both Statement I and Statement II are true.
- (4) Both Statement I and Statement II are false.

8 7

Match List I with List II. 59

List I

List II

(Process)

(Conditions)

- A. Isothermal process
- No heat exchange HENI. 111
- B. Isochoric

process

process

- ₹*\d|II. Carried out at constant temperature
- C. Isobaric
- III. Carried out at constant volume
- D. Adiabatic
- IV. Carried out at (1) constant pressure

process

- (1) A-I, B-II, C-III, D-IV
- (2) A-II, B-III, C-IV, D-I
- (3) A-IV, B-III, C-II, D-I
- (4) A-IV, B-II, C-III, D-I

- 1 gram of sodium hydroxide was treated with 25 mL of 0.75 M HCl solution, the mass of sodium hydroxide left unreacted is equal to
 - (1) Zero mg
- (2) 200 mg
- (3) 750 mg
- (4) 250 mg
- 61 Match List I with List II.

List I (Complex)

List II (Type of isomerism)

- A. $\left[\operatorname{Co}\left(\operatorname{NH}_{3}\right)_{5}\left(\operatorname{NO}_{2}\right)\right]\operatorname{Cl}_{2}$
- I. Solvate

isomerism

- B. $\left[\text{Co}(\text{NH}_3)_5(\text{SO}_4) \right] \text{Br}$
- II. Linkage

isomerism

- C. $\left[\text{Co(NH}_3)_6 \right] \left[\text{Cr(CN)}_6 \right]$
- III. Ionization

isomerism

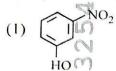
- D. $\left[\text{Co} \left(\text{H}_2 \text{O} \right)_6 \right] \text{Cl}_3$
- IV. Coordination

isomerism

Choose the correct answer from the options given below:

- (1) A-I, B-IV, C-III, D-II
- (2) A-II, B-IV, C-III, D-I
- (3) A-II, B-III, C-IV, D-I
- (4) A-I, B-III, C-IV, D-II
- Among Group 16 elements, which one does **NOT** show -2 oxidation state?
 - (1) Te
- (2) Po
- (3) O
- (4) Se
- The compound that will undergo S_N^{-1} reaction with the fastest rate is
 - (1) Sr
- $(2) \qquad \qquad B_1$
- (3) Br
- (4) Br

- Which one of the following alcohols react instantaneously with Lucas reagent?
 - (1) CH₃ CH CH₂OH CH₃
 - (2) $CH_3 C OH$ CH_3
 - (3) $CH_3 CH_2 CH_2 CH_2OH$
 - (4) CH₃ CH₂ CH OH CH₃
- 65 Match List I with List II.


	List I		List II
(C	(Conversion)		mber of
		Far	aday required)
A.	1 mol of H ₂ O to O ₂	I.	3F
B.	1 mol of MnO ₄ to	II.	2F
	Mn ²⁺		

- C. 1.5 mol of Ca from III. 1F molten CaCl₂
- D. 1 mol of FeO to Fe₂O₃ IV. 5F Choose the correct answer from the options given below:
 - (1) A-II, B-III, C-I, D-IV
 - (2) A-III, B-IV, C-II, D-I
 - (3) A-II, B-IV, C-I, D-III
 - (4) A-III, B-IV, C-I, D-II
- 66 The highest number of helium atoms is in
 - (1) 4 g of helium
 - (2) 2.271098 L of helium at STP
 - 4 mol of helium
 - (4) 4 u of helium
- 67 'Spin only' magnetic moment is same for which of the following ions?
 - A. Ti³⁺
- B. Cr²⁺
- C. Mn^{2+}
- D. Fe²⁺
- E. Se^{3+}

Choose the most appropriate answer from the options given below:

- (1) B and C only
- (2) A and D only
- (2) B and D only
 - (4) A and E only

68 Intramolecular hydrogen bonding is present in

(2) HF S

$$(3) \bigcirc \text{NO}_2$$

69 Fehling's solution 'A' is

- (1) alkaline solution of sodium potassium tartrate (Rochelle's salt)
- (2) aqueous sodium citrate
- (3) aqueous copper sulphate
- (4) alkaline copper sulphate
- 70 Match List I with List II.

List I

List II

Quantum Number

Information provided

 $m A. m_l$

shape of orbital

N B. ms

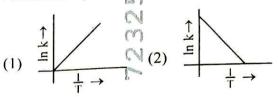
II. size of orbital

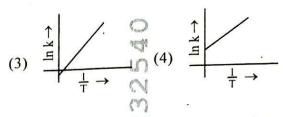
1 C. I

- III. orientation of orbital
- D. *n*
- IV. orientation of spin of electron

Choose the correct answer from the options given below:

- (1) A-III, B-IV, C-II, D-I
- (2) A-II, B-I, C-IV, D-III
- (3) A-I, B-III, C-II, D-IV
- (4) A-III, B-IV, C-I, D-II


71 Arrange the following elements in increasing order of <u>first ionization</u> enthalpy:


Li, Be, B; C, N

Choose the correct answer from the options given below:

- (1) Li < Bel < C < B < N
- (2) Li < Be < N < B < C
- (3) Li < Be < B < C < N
- (A) Li < B < Be < C < N

72 Which plot of $\ln \frac{1}{k} \text{ vs } \frac{1}{T}$ is consistent with Arrhenius equation?

Arrange the following elements in increasing order of electronegativity:

N, O, F, C, Si

Choose the correct answer from the options given below:

- $(1) O < F < N < C \le Si$
- (2) F < O < N < C < Si
- (3) Si < C < N < O < F
 - (4) Si < C < O < N < F
- 74 Match List I with List II.

List I (Reaction)

List II (Reagents/ Condition)

A.
$$\longrightarrow 2 \longrightarrow 2 \longrightarrow 0$$

C.
$$\bigcirc$$
 OH \rightarrow \bigcirc \bigcirc

D.
$$\bigcirc$$
 CH₂CH₃ \rightarrow \bigcirc

IV. (i)
$$O_3$$

- (1) A-IV, B-I, C-II, D-III
- (2) A-I, B-IV, C-II, D-III
- (3) A-IV, B-I, C-III, D-II
- (4) A-III, B-I, C-II, D-IV

75 Given below are two statements:

Statement 1: Aniline does not undergo Friedel-Crafts alkylation reaction.

Statement II: Aniline cannot be prepared through Gabriel synthesis.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement 1 is correct but Statement II is false.
- (2) Statement I is incorrect but Statement II is true.
- (3) Both Statement I and Statement II are true.
- (4) Both Statement I and Statement II are false.
- 76 In which of the following equilibria, K_p and K_c are NOT equal?
 - (1) $CO_{(g)} + H_2O_{(g)} \rightleftharpoons CO_{2(g)} + H_{2(g)}$
 - (2) $2 \operatorname{BrCl}_{(g)} \rightleftharpoons \operatorname{Br}_{2(g)} + \operatorname{Cl}_{2(g)}$
 - PCI_{5(g)} \rightleftharpoons PCI_{3(g)} + CI_{2(g)}
 - $(4) \quad H_{2(g)} + I_{2(g)} \rightleftharpoons 2 HI_{(g)}$
- 77 The most stable carbocation among the following is:

(3)
$$H_3C$$
 CH_3 CH_3

- 78 The reagents with which glucose does **not** react to give the corresponding tests/products are
 - A. Tollen's reagent
 - B. Schiff's reagent
 - C. HCN
 - D. NH₂OH
 - E. NaHSO₃

Choose the correct options from the given below:

- (1) B and E
- (2) E and D
- (3) B and C
- (4) A and D

79 Given below are two statements:

Statement I: Both $\left[\text{Co}\left(\text{NH}_3\right)_6\right]^{3+}$ and $\left[\text{CoF}_6\right]^{3-}$ complexes are octahedral but differ in their magnetic behaviour.

Statement II : $\left[\text{Co}(\text{NH}_3)_6 \right]^{3+}$ is diamagnetic

whereas $\left[\operatorname{CoF}_{6}\right]^{3-}$ is paramagnetic.

In the light of the above statements, choose the *correct* answer from the options given below:

- (1) Statement I is true but Statement II is false.
- (2) Statement I is false but Statement II is true.
- (3) Both Statement I and Statement II are true.
- (4) Both Statement I and Statement II are false.
- Activation energy of any chemical reaction can be calculated if one knows the value of
 - (1) orientation of reactant molecules during collision.
 - (2) rate constant at two different temperatures.
 - (3) rate constant at standard temperature.
 - (4) probability of collision.
- A compound with a molecular formula of C₆H₁₄ has two tertiary carbons. Its IUPAC name is:
 - 2,3-dimethylbutane
 - (2) 2,2-dimethylbutane
 - (3) n-hexane
 - (4) 2-methylpentane
- 82 Match List I with List II.

List I		List II
(Compound)	(Sh	ape/geometry)
A. NH ₃	I.	Trigonal Pyramidal
B. BrF ₅	П.	Square Planar
C. XeF ₄	III.	Octahedral
D. SF ₆	IV.	Square Pyramidal
Choose the corbelow:	rect answer	from the options given

- (1) A-III, B-IV, C-I, D-II
- (2) A-II, B-III, C-IV, D-I
- A-I, B-IV, C-II, D-III
 - (4) A-II, B-IV, C-III, D-I

- 83 The Henry's law constant (K₁₁) values of three gases (A, B, C) in water are 145, 2×10⁻⁵ and 35 kbar, respectively. The solubility of these gases in water follow the order:
 - $(1) \quad A > C > B$
- (2) A > B > C
- (3) B > A > C
- $(4) \quad B > C > A$
- 84 Which reaction is **NOT** a redox reaction?

(1)
$$\ddot{H}_2 + \ddot{Cl}_2 \rightarrow 2 \ddot{H} \ddot{Cl}$$

(2)
$$\stackrel{\dagger 2}{\text{BaCl}_2} + \text{Na}_2 \stackrel{\dagger 6}{\text{SO}_4} \rightarrow \text{BaSO}_4 + 2 \stackrel{\dagger 6}{\text{NaCl}}$$

(3)
$$\operatorname{Zn} + \operatorname{CuSO}_4 \to \operatorname{ZnSO}_4 + \operatorname{Cu}$$

(4)
$$2 \text{ KCIO}_3 + \tilde{l}_2 \rightarrow 2 \text{ KIO}_3 + \text{Cl}_2$$

85 Given below are two statements:

Statement I: The boiling point of three isomeric pentanes follows the order

n-pentane > isopentane > neopentane

Statement II: When branching increases, the molecule attains a shape of sphere. This results in smaller surface area for contact, due to which the intermolecular forces between the spherical molecules are weak, thereby lowering the boiling point.

In the light of the above statements, choose the *most appropriate* answer from the options given below:

- (1) Statement I is correct but Statement II is incorrect.
- (2) Statement I is incorrect but Statement II is correct.
- Both Statement I and Statement II are correct.
- (4) Both Statement I and Statement II are incorrect.

Chemistry: Section-B (Q. No. 86 to 100)

86 The rate of a reaction quadruples when temperature changes from 27°C to 57°C. Calculate the energy of activation.

Given $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$, $\log 4 = 0.6021$

- (1) 3.80 kJ/mol
- (2) 3804 kJ/mol
- (3) 38.04 kJ/mol
- (4) 380.4 kJ/mol
- 87 Consider the following reaction in a sealed vessel at equilibrium with concentrations of

$$N_2 = 3.0 \times 10^{-3} \text{ M}, O_2 = 4.2 \times 10^{-3} \text{ M} \text{ and } NO = 2.8 \times 10^{-3} \text{ M}.$$

$$2NO_{(g)} \rightleftharpoons N_{2(g)} + O_{2(g)}$$

If 0.1 mol L^{-1} of $NO_{(g)}$ is taken in a closed vessel, what will be degree of dissociation (α) of $NO_{(g)}$ at equilibrium?

- (1) 0.8889
- (2) 0.717
- (3) 0.00889
- (4) 0.0889
- During the preparation of Mohr's salt solution (Ferrous ammonium sulphate), which of the following acid is added to prevent hydrolysis of Fe²⁺ ion?
 - (1) dilute nitric acid
 - (2) dilute sulphuric acid
 - (3) dilute hydrochloric acid
 - (4) concentrated sulphuric acid
- 89 A compound X contains 32% of A, 20% of B and remaining percentage of C. Then, the empirical formula of X is:

(Given atomic masses of A = 64; B = 40; C = 32 u)

- (1) AB₂C₂
- (2) ABC₄
- (3) A_2BC_2
- LAY ABC3
- 90 The pair of lanthanoid ions which are diamagnetic is
 - (1) Gd^{3+} and Eu^{3+}
 - (2) Pm^{3+} and Sm^{3+}
 - (3) Ce^{4+} and Yb^{2+}
 - (4) Ce^{3+} and Eu^{2+}

91 Major products A and B formed in the following reaction sequence, are

$$H_{3}C \xrightarrow{OH} \underbrace{PBr_{3}}_{A} \xrightarrow{A} \underbrace{A}_{A} \xrightarrow{alc. KOH} \xrightarrow{B}_{(major)}$$

(1)
$$A = \bigcup_{A=0}^{H_3C} \bigcup_{B=0}^{OH} \bigcup_{B=0}^{OH} \bigcup_{B=0}^{OH} \bigcup_{A=0}^{OH} \bigcup_{A=0$$

(2)
$$A =$$

$$H_3C$$

$$H_3C$$

$$Br$$

$$Br$$

$$B =$$

$$B =$$

(3)
$$A = \begin{bmatrix} Br \\ H_3C \\ \vdots \\ B = \end{bmatrix}$$

(4)
$$A =$$

$$H_3C$$

$$Br$$

$$B =$$

$$B =$$

The plot of osmotic pressure (Π) vs concentration 92 (mol L-1) for a solution gives a straight line with slope 25.73 L bar mol-1. The temperature at which the osmotic pressure measurement is done is:

(Use R = $0.083 \text{ L barmol}^{-1} \text{ K}^{-1}$)

- (1) 25.73°C
- (2) 12.05°C
- (3) 37°C
- (4) 310°C
- Given below are certain cations. Using inorganic 93 qualitative analysis, arrange them in increasing group number from 0 to VI.
 - A. 13 Al3+
- C. Ba²⁺
- E. 12 Mg2+

Choose the correct answer from the options given below:

- (1) E, C, D, B, A (1)
- (2) E, A, B, C, D
- (3) B, A, D, C, E
- (4) B, C, A, D, E

The products A and B obtained in the following reactions, respectively, are 94 $3ROH + PCl_3 \rightarrow BRCI + A$

 $ROH + PCI_5 \rightarrow RCI + HCI + B$ (1) H₃PO₄ and POCl₃

- WY H3PO3 and POCI3
 - (3) POCl₃ and H₃PO₃
 - (4) POCl₃ and H₃PO₄
- For the given reaction: 95

$$C = CH \xrightarrow{\text{KMnO}_4/H^+} \xrightarrow{\text{'p'}} \text{(major product)}$$

'P' is

$$(2) \bigcirc -C - C \bigcirc$$

- CHO (3)
- (4)
- The work done during reversible isothermal 96 expansion of one mole of hydrogen gas at 25% from pressure of 20 atmosphere to 10 atmosphere is:

(Given $R = 2.0 \text{ cal } K^{-1} \text{ mol}^{-1}$)

- (1) 413.14 calories
- (2) 100 calories
- (3) 0 calorie
- 47 -413.14 calories
- 97 Identify the major product C formed in the following reaction sequence:

$$CH_3 - CH_2 - CH_2 - I \xrightarrow{NaCN} A$$

$$\begin{array}{c}
OH^{-} & \square \\
\hline
Partial hydrolysis
\end{array}$$

$$\begin{array}{c}
B \\
\hline
Partial hydrolysis
\end{array}$$

$$\begin{array}{c}
B \\
\hline
Partial hydrolysis
\end{array}$$

$$\begin{array}{c}
C \\
C \\
C
\end{array}$$
(major)

- (1) butanamide
- (2) α-bromobutanoic acid
- propylamine
- butylamine

os Identify the correct answer.

- Dipole moment of NF₃ is greater than that of NH₃.
- (2) Three canonical forms can be drawn for CO_3^{2-} ion.
- (3) Three resonance structures can be drawn for ozone.
- (4) BF₃ has non-zero dipole moment.
- 99 Mass in grams of copper deposited by passing 9.6487 A current through a voltmeter containing copper sulphate solution for 100 seconds is:

(Given: Molar mass of Cu: 63 g mol^{-1} , 1F = 96487 C)

- (1) 31.5 g
- (2) 0.0315 g
- (3) 3.15 g
- (4) 0.315 g
- 100 Given below are two statements:

heteroleptic complex.

Statement I: $\left[\text{Co}\left(\text{NH}_3\right)_6\right]^{3+}$ is a homoleptic complex whereas $\left[\text{Co}\left(\text{NH}_3\right)_4\text{Cl}_2\right]^+$ is a

Statement II: Complex $\left[\text{Co}(\text{NH}_3)_6\right]^{3+}$ has only

one kind of ligands but $\left[\operatorname{Co}\left(\operatorname{NH}_3\right)_4\operatorname{Cl}_2\right]^+$ has more than one kind of ligands.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is true but Statement II is false.
- (2) Statement I is false but Statement II is true.
- Both Statement I and Statement II are true.
 - (4) Both Statement I and Statement II are false.

Botany: Section-A (Q. No. 101 to 135)

- 101 Inhibition of Succinic dehydrogenase enzyme by malonate is a classical example of:
 - (1) Competitive inhibition
 - (2) Enzyme activation
 - (3) Cofactor inhibition
 - (4) Feedback inhibition
- Which one of the following can be explained on the basis of Mendel's Law of Dominance?
 - A. Out of one pair of factors one is dominant and the other is recessive.
 - B. Alleles do not show any expression and both the characters appear as such in F₂ generation.
 - Factors occur in pairs in normal diploid plants.
 - D. The discrete unit controlling a particular character is called factor.
 - E. The expression of only one of the parental characters is found in a monohybrid cross.

- (1) B, C and D only
- (2) A, B, C, D and E
 - (3) A, B and C only
 - (4) A, C, D and E only
- 103 Lecithin, a small molecular weight organic compound found in living tissues, is an example of:
 - (1) Glycerides
 - (2) Carbohydrates
 - (3) Aming acids
 - Phospholipids

104	M	latch List I with L	ist II		0
		List I	13(11	List II	
	A.		9	Site of formation	
			and i	of glycolipid	
	B.	Centriole	u.	Organization like	
		10 10 10 10 10 10 10 10 10 10 10 10 10 1	CA.	the cartwheel	
	C.	Leucoplasts	THI.	Site for active	
			CA	ribosomal RNA	
				synthesis	
	D.	Golgi	IV.	For storing	
		apparatus	8 0.0	nutrients	
	CI	noose the correct a	answer	from the options given	
	be	low:	071		
	(1) A-III, B-IV, C-	-IL/D-I		
) A-I, B-II, C-II			
	J3	A-III, B-II, C-I	IV, D-1		
	(4) A-II, B-III, C-I	I, D-IV		
105	W	hich of the fol	lowing	g is an example of	
	ac	tinomorphic flow	er?	s is all example of	11
	(1)		(2)	Sesbania	
	(3)) Datura	3(4)	Cassia	
100		a e	T		
106		ow many molecul	les of A	ATP and NADPH are	
	Co	quired for every n	nolecul	e of CO ₂ fixed in the	
		lvin cycle?	(Y)		
	(1)	NADPH	HAIP	and 3 molecules of	
	12		f ATD	12 1 1 .0	11
33		NADPH	HAIP	and 2 molecules of	11
	(3)		f ATD	and 3 molecules of	
	(5)	NADPH	e-i	and 5 molecules of	
	(4)		f ATP	and 2 molecules of	
	. ,	NADPH	Ol	and 2 molecules of	an V.Andija ve
			FFT		11
107	For	mation of interfa	scicular	cambium from fully	
	dev	eloped parenchy	ma cell	s is an example for	
	(1)	Dedifferentiation	on	F 3	
	(2)	Maturation			
	(3)	Differentiation			8
	X4)	Redifferentiation	44.00		
400			T.	8	
108	Aux	kin is used by gar	deners	to prepare weed-free	
		ns. But no damag	e is cau	sed to grass as auxin	
	(1)			monocotyledonous	
	(2)		(V	-i	
	(2)	produce creedly	yı-aivi.	sion in grasses, to	
	(3)	produce growth			
	(4)	promotes apical	uomin	moture 1	
	(+)	promotes abscis	21011 01	mature leaves only.	

109) Wh	nich of the folloction of photos	owing a synthesi	re require s?	d for the dark
	A.	Light			
	В.	Chlorophyll			(\$
		CO_2			120
	D.	_			
	E.	NADPH			la)
	Cho	oose the correct	answer	from the	options given
		C, D and E o	nly		
1		D and E only			0
	360 360	A, B and C o			NO TO
		B, C and D o			N
		•	18		(4)
10		lactose prese teria is transpor			ii a
	(1)	Permease			
	(2)	Polymerase		11	0
	(3)	Beta-galactos	idase	1	CA1
	(4)	Acetylase		- 11	12)
				1	O
11	The	cofactor of the	enzym	e carboxy _l	peptidase is:
	(1)	Flavin	(2)	Haem	5
	(3)	Zinc	(4)	Niacin	
		8			
12	Iden	tify the part of	the seed	from the	given figure
	gern	ch is destined ninates.	to forn	1 root wh	en the seed
	*		8		OI
*	(ASS)	Maria Maria			m
				•	6.4
		A STATE OF THE PARTY OF THE PAR			
150		$A \rightarrow A$			
		B	Ę.	ļ	0
2.	A	C			1
		ת			(A)
					100

(3) A

(4) B

- 113 Given below are two statements:
 - Statement 1: Chromosomes become gradually visible under light microscope during leptotene stage.
 - Statement II: The begining of diplotene stage is recognized by dissolution of synaptonemal complex.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is true but Statement II is false
- (2) Statement I is false but Statement II is false
- (3) Both Statement I and Statement II are true
- (4) Both Statement I and Statement II are false
- The type of conservation in which the threatened species are taken out from their natural habitat and placed in special setting where they can be protected and given special care is called;
 - Semi-conservative method
 - (2) Sustainable development
 - (3) in-situ conservation
 - (4) Biodiversity conservation
- 115 Given below are two statements:
 - Statement I: Parenchyma is living but collenchyma is dead tissue
 - **Statement II:** Gymnosperms lack xylem vessels but presence of xylem vessels is the characteristic of angiosperms.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is true but Statement II is false
- (2) Statement I is false but Statement II is true
- (3) Both Statement I and Statement II are true
- (4) Both Statement I and Statement II are false
- 116 The equation of Verhulst-Pearl logistic growth is

$$\frac{dN}{dt} = rN \left[\frac{K - N}{K} \right].$$

From this equation, K indicates:

- (1) Carrying capacity
- (2) Population density
- (3) Intrinsic rate of natural increase
- (4) Biotic potential

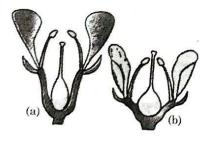
117 Match List I with List II

	List I			List II
۸.	Clostridium		I.	Ethanol
	butylicum			
\mathbf{B} .	Saccharomyces	10	11.	Streptokinase
	cerevisiae	15)		
C.	Trichoderma	N	111.	Butyric acid
	polysporum	(4)		

- D. Streptococcus sp. IV. Cyclosporin-A Choose the correct answer from the options given below:
- A-III, B-I, C-IV, D-II
- (2) A-IV, B-I, C-III, D-II
- (3) A-III, B-I, C-II, D-IV
- (4) A-II, B-IV, C-III, D-I
- Which one of the following is <u>not</u> a criterion for classification of fungi?
 - (1) Mode of spore formation
 - (2) Fruiting body
 - (3) Morphology of mycelium
 - (4) Mode of nutrition
- The capacity to generate a whole plant from any cell of the plant is called:
 - (1) Differentiation
 - (2) Somatic hybridization
 - (3) Totipotency
 - (4) Micropropagation
- 120 Given below are two statements:

Statement I: Bt toxins are insect group specific and coded by a gene cry IAc.

Statement II: Bt toxin exists as inactive protoxin in B. thuringiensis. However, after ingestion by the insect the inactive protoxin gets converted into active form due to acidic pH of the insect gut.


In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is true but Statement II is false
- (2) Statement I is false but Statement II is true
- (3) Both Statement I and Statement II are true
- (4) Both Statement I and Statement II are false

- 121 Identify the set of correct statements:
 - The flowers of Vallisneria are colourful and produce nectar.
 - B: The flowers of waterlily are not pollinated by water.
 - C. In most of water-pollinated species, the pollen grains are protected from wetting.
 - Pollen grains of some hydrophytes are long and ribbon like.
 - E. In some hydrophytes, the pollen grains are carried passively inside water.

Choose the correct answer from the options given below:

- (1) A, C, D and E only
- B, C, D and E only
 - (3) C, D and E only
 - (4) A, B, C and D only
- 122 A transcription unit in DNA is defined primarily by the three regions in DNA and these are with respect to upstream and down stream end;
 - (A) Inducer, Repressor, Structural gene
 - (2) Promotor, Structural gene, Terminator
 - (3) Repressor, Operator gene, Structural gene
 - (4) Structural gene, Transposons, Operator gene
- 123 Bulliform cells are responsible for
 - (1) Increased photosynthesis in monocots.
 - (2) Providing large spaces for storage of sugars.
 - (3) Inward curling of leaves in monocots.
 - (4) Protecting the plant from salt stress.
- 124 Identify the type of flowers based on the position of calyx, corolla and androecium with respect to the ovary from the given figures (a) and (b)

- (1) (a) Perigynous; (b) Epigynous
- (2) (a) Perigynous; (b) Perigynous
- (3) (a) Epigynous; (b) Hypogynous
- (4) (a) Hypogynous; (b) Epigynous

- What is the fate of a piece of DNA carrying only gene of interest which is transferred into an alien organism?
 - A. The piece of DNA would be able to multiply itself independently in the progeny cells of the organism.
 - B. It may get integrated into the genome of the recipient.
 - It may multiply and be inherited along with the host DNA.
 - The alien piece of DNA is not an integral part of chromosome.
 - E. It shows ability to replicate.

Choose the correct answer from the options given below:

- (1) B and C only
- (2) A and E only
- (3) A and B only
- (4) D and E only
- 126 Tropical regions show greatest level of species richness because
 - A. Tropical latitudes have remained relatively undisturbed for millions of years, hence more time was available for species diversification.
 - B. Tropical environments are more seasonal.
 - C. More solar energy is available in tropics.
 - Constant environments promote niche specialization.
 - Tropical environments are constant and predictable.

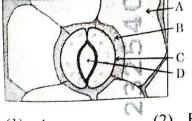
- (1) A, B and E only
- (2) A, B and D only
- (3) A, C, D and E only
- (4) A and B only
- 127 A pink flowered Snapdragon plant was crossed with a red flowered Snapdragon plant. What type of phenotype/s is/are expected in the progeny?
 - (1) Only pink flowered plants
 - (2) Red, Pink as well as white flowered plants
 - (3) Only red flowered plants
 - Red flowered as well as pink flowered plants

128	These are re	garded as major causes o	f biodiversity
1	loss:	O	crany

- Over exploitation
- Co-extinction B.
- Mutation C.
- Habitat loss and fragmentation D.
- Migration E.

Choose the correct option:

- (1) A, B and E only
- (2) A, B and D only
- (3) A, C and D only
- (4) A, B, C and D only
- Match List I with bist II 129


List I

List II

- A. Rhizopus
- 1. Mushroom
- B. Ustilago
- II. Smut fungus
- C. Puccinia
- III. Bread mould
- D. Agaricus
- Rust fungus IV.

Choose the correct answer from the options given below:

- (1) A-III, B-II, C-I, D-IV
- (2) A-IV, B-III, C-II, D-I
- (43) A-III, B-II, C-IV, D-I
 - (4) A-I, B-III, C-II, D-IV
- In a plant, black seed color (BB/Bb) is dominant over white seed color (bb). In order to find out the genotype of the black seed plant, with which of the following genotype will you cross it?
 - Bb (1)
- (2) BB/Bb
- (3) BB
- (4) bb
- In the given figure, which component has thin 131 outer walls and highly thickened inner walls?

- A

- D

- List of endangered species was released by-132
 - (1) FOAM
- (2) IUCN
- (3) GEAC 117
- WWF
- Match List I with List II 133

List I

List II

- Two or more
- Back cross 1.
- alternative

forms of a gene

- B. Cross of F₁
- Ploidy 11.
- progeny with

homozygous

recessive parent

- C. Cross of F₁
- Allele III.

progeny with

any of the parents

- D. Number of
- Test cross IV.

chromosome

sets in plant

- A-III, B-IV, C-I, D-II
- (2) A-IV, B-III, C-II, D-I
- (3) A-I, B-II, C-III, D-IV
- A-II, B-I, C-III, D-IV
- Hind II always cuts DNA molecules at a particular 134 point called recognition sequence and it consists of:
 - (1) 4 bp
- (2) 10 bp
- (3) 8 bp
- 6 bp
- 135 Spindle fibers attach to kinetochores of chromosomes during
 - (1)Anaphase
- Telophase
- Prophase
- (4) Metaphase

Botany: Section-B (Q. No. 136 to 150)

136 Match List I with List II

List I List II A. Robert May I. Species-Area relationship Alexander von 11. Long term Humboldt ecosystem experiment using out door plots Paul Ehrlich III. Global species diversity at about 7 million

Choose the correct answer from the options given below:

IV. Rivet popper

hypothesis

(1) A-I, B-III, C-II, D-IV

D. David Tilman

- (2) A-III, B-IV, C-II, D-I
- (3) A-II, B-III, C-I, D-IV
- (4) A-III, B-I, C-IV, D-II

137 Match List I with List II

List I

List II

- III A. Frederick I. Genetic code
 Griffith
 - B. Francois Jacob II. Semi-conservative & Jacque mode of DNA

 Monod replication
 - C. Har Gobind III. Transformation
 Khorana
 - O. Meselson & IV. Lac operon Stahl

Choose the correct answer from the options given below:

- (1) A-II, B-III, C-IV, D-I
- (2) A-IV, B-I, C-II, D-III
- (3) A-III, B-II, C-I, D-IV
- A-III, B-IV, C-I, D-II

138 Match List I with List II

Lis	List I (Types of Stamens)		t II
(Ty			ample)
A.	Monoadelphous	I.	Citrus
B.	Diadelphous	II.	Pea
C.	Polyadelphous	III.	Lily
D.	Epiphyllous	IV.	China-rose
\mathcal{C}	hoose the correct at	iswer	from the option

Choose the correct answer from the options give below:

- (1) A-I, B-II, C-IV, D-III
- (2) A-III, B-I, C-IV, D-II
- (3) A-IV, B-II, C-I, D-III
- (4) A-IV, B-I, C-II, D-III

139 Match List I with List II

		List I		List II
	A.	GLUT-4	I.	Hormone
	B.	Insulin	II.	Enzyme
	C.	Trypsin	III.	Intercellular
				ground substance
D.	Collagen	IV.	Enables glucose	
				transport into cells

- (1) A-II, B-III, C-IV, D-I
- (2) A-III, B-IV, C-I, D-II
- (2) A-IV, B-I, C-II, D-III
- (4) A-I, B-II, C-III, D-IV
- 140 Which of the following statement is correct regarding the process of replication in *E.coli*?
 - (1) The DNA dependent DNA polymerase catalyses polymerization in 5'→3' as well as 3'→5' direction.
 - (2) The DNA dependent DNA polymerase catalyses polymerization in 5' → 3' direction.
 - (3) The DNA dependent DNA polymerase catalyses polymerization in one direction that is 3'→5'.
 - (4) The DNA dependent RNA polymerase catalyses polymerization in one direction, that is 5'→3'.

141 Match List I with List II

List I

List II

- A. Citric acid
- Cytoplasm
- cycle
- B. Glycolysis
- II. Mitochondrial matrix
- C. Electron transport

system

- III. Intermembrane space of mitochondria
- D. Proton gradient
- IV. Inner mitochondrial membrane

Choose the correct answer from the options given below:

- (1) A-III, B-IV, C-I, D-II
- (2) A-IV, B-III, C-II, D-I
- (3) A-I, B-II, C-III, D-IV
- (4) A-II, B-I, C-IV, D-III
- 142 Identify the step in tricarboxylic acid cycle, which does not involve oxidation of substrate.
 - (1) Succinyl-CoA → Succinic acid
 - (2) Isocitrate → α-ketoglutaric acid
 - (3) Malic acid → Oxaloacetic acid
 - (4) Succinic acid → Malic acid
- 143 Spraying sugarcane crop with which of the following plant growth regulators, increases the length of stem, thus, increasing the yield?
 - (1) Cytokinin
 - (2) Abscisic acid
 - (3) Auxin
 - (4) Gibberellin
- 144 The DNA present in chloroplast is:
 - (1) Linear, single stranded
 - (2) Circular, single stranded
 - (3) Linear, double stranded
 - (4) Circular, double stranded

145 Given below are two statements:

Statement I: In C_3 plants, some O_2 binds to RuBisCO, hence CO_2 fixation is decreased.

Statement II: In C_4 plants, mesophyll cells show very little photorespiration while bundle sheath cells do not show photorespiration.

In the light of the above statements, choose the *correct* answer from the options given below:

- (1) Statement I is true but Statement II is false
- (2) Statement I is false but Statement II is true
- (3) Both Statement I and Statement II are true
- (4) Both Statement I and Statement II are false
- 146 Which of the following are fused in somatic hybridization involving two varieties of plants?
 - (1) Protoplasts
 - (2) Pollens
 - (3) Callus
 - (4) Somatic embryos
- 147 Read the following statements and choose the set of correct statements:

In the members of Phaeophyceae,

- A. Asexual reproduction occurs usually by biflagellate zoospores.
- B. Sexual reproduction is by oogamous method only.
- C. Stored food is in the form of carbohydrates which is either mannitol or laminarin.
- D. The major pigments found are chlorophyll a, c and carotenoids and xanthophyll.
- E. Vegetative cells have a cellulosic wall, usually covered on the outside by gelatinous coating of algin.

- (1) A, C, D and E only
- (2) A, B, C and E only
- (3) A, B, C and D only
- (4) B, C, D and E only

148 In an ecosystem if the Net Primary Productivity (NPP) of first trophic level is

 $100x (kcal m^{-2}) \text{ pr}^{-1}$, what would be the GPP (Gross Primary Productivity) of the third trophic level of the same ecosystem?

- (1) $10x (keal \ m^{-2}) yr^{-1}$
- (2) $\frac{100x}{3x} (kcal \ m^{-2}) \ yr^{-1}$
- (3) $\frac{x}{10} (kcal \ m^{-2}) yr^{-1}$
- (4) $x (kcal \ m^{-2}) yr^{-1}$
- 149 Identify the correct description about the given figure:

- (1) Cleistogamous flowers showing autogamy.
- (2) Compact inflorescence showing complete autogamy.
- Wind pollinated plant inflorescence showing flowers with well exposed stamens.
- (4) Water pollinated flowers showing stamens with mucilaginous covering.

150 Match List I with List II

	List I		List II
A.	Rose	I.	Twisted aestivation
B.	Pea	IJ.	Perigynous flower
C.	Cotton	Ш.	Drupe
D.	Mango	IV.	Marginal placentation
Cho	ose the cor	rect ans	wer from the options given

- (1) A-IV, B-III, C-II, D-I
- (2) A-II, B-III, C-IV, D-I
- (3) A-II, B-IV, C-I, D-III
- (4) A-I, B-II, C-III, D-IV

Zoology: Section-A (Q. No. 151 to 185)

151 Match List I with List II:

List II A. Pleurobrachia I. Mollusca

- B. Radula II. Ctenophora III. Osteichthyes
- C. Stomochord III. Osterchinyes

 D. Air bladder IV. Hemichordata

Choose the correct answer from the options given below:

- A-II, B-IV, C-I, D-III
- (2) A-IV, B-III, C-II, D-I
- (3) A-IV, B-II, C-III, D-I
- (4) A-II, B-I, C-IV, D-III
- 152 Match List I with List II:

List I			List II
A.	Non-medicated IUD	I.	Multiload 375
B.	Copper releasing IUD	II.	Progestogens

- C. Hormone releasing IUD III. Lippes loop
- D. Implants IV. LNG-20
 Choose the correct answer from the options given below:
 - (1) A-IV, B-I, C-II, D-III
 - (2) A-III, B-I, C-IV, D-II
 - (3) A-III, B-I, C-II, D-IV
 - (4) A-I, B-III, C-IV, D-II
- 153 Match List I with List II:

List I A. α-l antitrypsin B. Cry IAb C. Cry IAc II. ADA deficiency III. Emphysema

D. Enzyme IV. Corn borer replacement therapy

Choose the correct answer from the options given below:

- A-III, B-IV, C-I, D-II
- (2) A-II, B-IV, C-I, D-III
- (3) A-II, B-I, C-IV, D-III
- (4) A-III, B-I, C-II, D-IV

below:

Match List I with List II:

List I 111 A. Common cold

List II

- Haemozoin
- 1. Plasmodium
- 11. **Typhoid**
- Widal test
- III.
- D. Allergy
- Rhinoviruses IV.

Dust mites Choose the correct answer from the options given

- (H) A-III, B-I, C-II, D-IV
 - (2) A-IV, B-II, C-III, D-I
 - (3) A-II, B-IV, C-III, D-I
 - (4) A-I, B-III, C-II, D-IV

Match List I with List II:

List I

List II

- A. Cocaine
- 1. Effective sedative in surgery
- B. Heroin
- 11. Cannabis sativa
- C. Morphine
- III. Erythroxylum
- D. Marijuana

IV. Papaver somniferum Choose the correct answer from the options given below:

- (1) A-II, B-I, C-III, D-IV
- A-III, B-IV, C-I, D-II
 - (3) A-IV, B-III, C-I, D-II
 - (4) A-I, B-III, C-II, D-IV

Match List I with List II: 156

	List I (Sub Phases of		List II (Specific
	Prophase I)		characters)
A.	Diakinesis	I.	Synaptonemal complex formation
B.	Pachytene	II.	Completion of terminalisation of chiasmata
C.	Zygotene	III.	Chromosomes look like thin threads
D.	Leptotene	IV.	Appearance of recombination

Choose the correct answer from the options given below:

nodules

- (1) A-II, B-IV, C-I, D-III
- (2) A-IV, B-III, C-II, D-I
- (3) A-IV, B-II, C-III, D-I
- (4) A-I, B-II, C-IV, D-III

- Given below are two statements: 157
 - Statement I: The presence or absence of hymen is not a reliable indicator of virginity.
 - xStatement II: The hymen is torn during the first coitus only.

In the light of the above statements, choose the correct answer from the options given below:

- Statement I is true but Statement II is false
 - (2) Statement I is false but Statement II is true
 - (3) Both Statement I and Statement II are true
 - (4) Both Statement I and Statement II are false
- Which one is the correct product of DNA 158 dependent RNA polymerase to the given template?
 - 3'TACATGGCAAATATCCATTCA5'
 - 5'AUGUACCGUUUAUAGGGAAGU3'
 - (2) 5'ATGTACCGTTTATAGGTAAGT3'
 - (8) 5'AUGUACCGUUUAUAGGUAAGU3'
 - (4) 5'AUGUAAAGUUUAUAGGUAAGU3'

159 Match List I with List II:

	List I		List II
A.	Expiratory	I	Expiratory reserve
	capacity		volume + Tidal
			volume +
	mid after		Inspiratory reserve
	26		volume
B.	Functional	II.	Tidal volume +
	residual		Expiratory reserve
	capacity		volume
C.	Vital capacity	III.	Tidal volume +
			Inspiratory reserve
			volume
D.	Inspiratory	IV.	Expiratory reserve
	capacity		volume + Residual
	20		volume
_	Marian and the second		

- (1) A-II, B-I, C-IV, D-III
- (2) A-I, B-III, C-II, D-IV
- 4 A-II, B-IV, C-I, D-III
 - (4) A-III, B-II, C-IV, D-I

- 160 Which of the following are Autoimmune disorders?
 - A. Myasthema gravis
 - B. Rheumatoid arthritis
 - Gout
 - D. Muscular dystrophy
 - Systemic Lupus Erythematosus (SLE)

Choose the most appropriate answer from the options given below:

- (1) B. C & E only
- (2) C, D & E lonly
- (3) A. B & D only
- (4) A. B & Bonly
- 161 Consider the following statements:
 - Annelids are true coelomates
 - хB. Poriferans are pseudocoelomates
 - xC. Aschelminthes are acoelomates
 - Platyhelminthes are pseudocoelomates xD.

Choose the correct answer from the options given below: 1.VI.

- (1) Conly
- (2) Donly
- (3) Bonly
- A only
- Given below are two statements: 162
 - Statement I: In the nephron, the descending limb of loop of Henle is impermeable to water and permeable to electrolytes.
 - Statement II: The proximal convoluted tubule is lined by simple columnar brush border epithelium and increases the surface area for reabsorption.

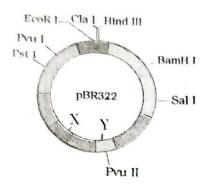
In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is true but Statement II is false
- Statement I is false but Statement II is true
 - (3) Both Statement I and Statement II are true
 - (4) Both Statement I and Statement II are false

- 163 Match List I with List II:
 - List II List I
 - Hag fish I.
 - A. Pterophyllum Saw fish 11.
 - B. Myxine III. Angel fish C. Pristis Flying fish IV.
 - D. Exocoetus Choose the correct answer from the options given
 - below: (1) A-IV, B-I, C-II, D-III
 - (2) A-III, B-II, C-I, D-IV
 - (3) A-II, B-I, C-III, D-IV
 - (4) A-III, B-I, C-II, D-IV
- Which of the following is not a steroid hormone? 164
 - (1) Progesterone
 - (2) Glucagon
 - (3) Cortisol
 - (4) Testosterone
- Match List I with List II: 165

List II List I

- I. Peptide bond A. Lipase
- B. Nuclease П. Ester bond
- C. Protease III. Glycosidic bond
- IV. Phosphodiester bond D. Amylase Choose the correct answer from the options given below:
- A-II, B-IV, C-I, D-III
- (2) A-IV, B-I, C-III, D-II
- (3) A-IV, B-II, C-III, D-I
- (4) A-III, B-II, C-I, D-IV
- 166 Match List I with List II:
 - List I
 - A. Down's syndrome
- 11th chromosome I.


List II

- B. α-Thalassemia
- 'X' chromosome
- C. β-Thalassemia
- III. 21st chromosome
- D. Klinefelter's syndrome
- IV. 16th chromosome

- (1) A-III, B-IV, C-I, D-II
- (2) A-IV, B-I, C-II, D-III
- (3) A-I, B-II, C-III, D-IV
- (4) A-II, B-III, C-IV, D-I

167		171 Which one of the following factors will not affect
	stands for	the Hardy-Weinberg equilibrium?
	(1) Tumor inducing plasmid	(1) Gene migration
	(2) Temperature independent plasmid	(2) Constant gene pool
	(3) Tumour inhibiting plasmid	(3) Genetic recombination
	(4) Tumor independent plasmid	(4) Genetic drift
	L)	172 Match List I with List II:
	O O.	List I
168	Given below are two statements: one is labelled	A. Pons I. Provides additional
	as Assertion A and the other is labelled as Reason R:	space for Neurons,
		regulates posture
	Assertion A: Breast-feeding during initial period	and balance.
	of infant growth is recommended by doctors for	B. Hypothalamus II. Controls respiration and
	bringing a healthy baby.	gastric secretions.
	Reason R: Colostrum contains several antibodies	C. Medulla III. Connects different
	absolutely essential to develop resistance for the new born baby.	regions of the
	00	brain.
	In the light of the above statements, choose the	D. Cerebellum IV. Neuro secretory
	most appropriate answer from the options given below:	cells
	Sec. Sec.	Choose the correct answer from the options given
	(1) A is correct but R is not correct.	below:
	(2) A is not correct but R is correct.	(1) A-I, B-III, C-II, D-IV
	(3) Both A and R are correct and R is the correct	(2) A-II, B-I, C-III, D-IV (3) A-II, B-III, C-I, D-IV
	explanation of A.	(3) A-II, B-III, C-I, D-IV
9	Both A and R are correct but R is NOT the	(A) 11 m, 5 1 v, 6 m, 5 1
	correct explanation of A.	173 The flippers of the Penguins and Dolphins are
		the example of the
169	Which of the following is not a component of	(1) Convergent evolution
	Fallopian tube?	(2) Divergent evolution
	(1) Infundibulum	(3) Adaptive radiation
	(2) Ampulla	(4) Natural selection
	loh J	174 Following are the stages of pathway for
·	. 00	conduction of an action potential through the
	(4) Isthmus	heart:
		A. AV bundle
170	In both sexes of cockroach, a pair of jointed	B. Purkinje fibres
	filamentous structures called anal cerci are present	C. AV node
	on:	D. Bundle branches
	(1) 8 th and 9 th segment	E. SA node
	(a) 11th	Choose the correct sequence of pathway from the
		options given below:
	(3) 5 th segment	(1) B-D-E-C-A (2) E-A-D-B-C (3) E-C-A-D-B (4) A-E-C-B-D
ì	(4) 10 th segment	(4) A-E-C-D-D
TS E	nglish 1	5 [Contd
IJ N	AND IN A STATE OF THE STATE OF	Contain

175 The following diagram showing restriction sites in E. coli cloning vector pBR322. Find the role of 'X' and 'Y' genes:

- (1) The gene 'X' is for protein involved in replication of Plasmid and 'Y' for resistance to antibiotics.
- (2) Gene 'X' is responsible for recognition sites and 'Y' is responsible for antibiotic resistance.
- (3) The gene 'X' is responsible for resistance to antibiotics and 'Y' for protein involved in the replication of Plasmid.
- (4) The gene 'X' is responsible for controlling the copy number of the linked DNA and 'Y' for protein involved in the replication of Plasmid.
- 176 Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R:
 - ★ Assertion A: FSH acts upon ovarian follicles in female and Leydig cells in male.

Reason R: Growing ovarian follicles secrete estrogen in female while interstitial cells secrete androgen in male human being.

In the light of the above statements, choose the correct answer from the options given below:

- (1) A is true but R is false
- (2) A is false but R is true
 - (3) Both A and R are true and R is the correct explanation of A.
 - (4) Both A and R are true but R is NOT the correct explanation of A.

- 177 Which of the following statements is incorrect?
 - (1) Bio-reactors are used to produce small scale bacterial cultures.
 - (2) Bio-reactors have an agitator system, an oxygen delivery system and foam control system.
 - (3) A bio-reactor provides optimal growth conditions for achieving the desired product.
 - (4) Most commonly used bio-reactors are of stirring type.

178 Match List I with List II:

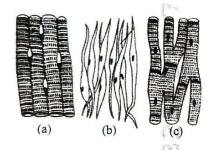
	List I		List II
A.	Axoneme	I.	Centriole
В.	Cartwheel	11.	Cilia and flagella
	pattern		
C.	Crista	III.	Chromosome
D.	Satellite	IV.	Mitochondria
C	hoose the correc	t answer	from the options give
b	elow:		

- (1) A-II, B-IV, C-I, D-III
- (2) A-II, B-I, C-IV, D-III
 - (3) A-IV, B-III, C-II, D-I
 - (4) A-IV, B-II, C-III, D-I

179 Match List I with List II:

	List I		List II		
A.	Fibrous joints	I.	Adjacent		
			vertebrae, limited		
			movement		
В.	Cartilaginous	II.	Humerus and		
	joints		Pectoral girdle,		
			rotational		
			movement		
C.	Hinge	III.	Skull, don't		
	joints		allow any		
	es.		movement		
D.	Ball and	IV.	Knee, help in		
	socket joints		locomotion		
Choose the correct answer from the options given					

(1) A-II, B-III, C-I, D-IV


below:

- (2) A-III, B-I, C-IV, D-II
 - (3) A-IV, B-II, C-III, D-I
- (4) A-I, B-III, C-II, D-IV

- 180 Given below are some stages of human evolution. Arrange them in correct sequence. (Past to Recent)
 - A. Homo habilis
 - B. Homo sapiens
 - C. Homo neanderthalensis
 - D. Homo erectus

Choose the correct sequence of human evolution from the options given below:

- (1) C-B-D-A
- (2) A-D-C-B
- (3) D-A-C-B
- (4) B-A-D-C
- 181 Three types of muscles are given as a, b and c. Identify the correct matching pair along with their location in human body:

Name of muscle/location

- (1) (a) Skeletal Biceps
 - (b) Involuntary Intestine
 - (c) Smooth Heart.
- (2) (a) Involuntary Nose tip
 - (b) Skeletal Bone
 - (c) Cardiac Heart.
- (3) (a) Smooth Toes
 - (b) Skeletal Legs
 - (c) Cardiac Heart.
- (a) Skeletal Triceps
 - (b) Smooth Stomach
 - (c) Cardiac Heart.

- 182 Following are the stages of cell division:
 - (3)A. Gap 2 phase
 - B. Cytokinesis
 - C. Synthesis phase
 - D. Karyokinesis
 - OE. Gap 1 phase

Choose the correct sequence of stages from the options given below:

- (1) B-D-E-A-C (2)
- (2) E-C-A-D-B
- (3) C-E-D-A-B
- (4) E-B-D-A-C
- Which of the following is <u>not</u> a natural/traditional contraceptive method?
 - (1) Lactational amenorrhea
 - (2) Vaults
 - (3) Coitus interruptus
 - (4) Periodic abstinence
- 184 Match List I with List II:

List I

List II

- A. Typhoid
- I. Fungus
- B. Leishmaniasis
- II. Nematode
- C. Ringworm
- III. Protozoa
- D. Filariasis
- IV. Bacteria

- (1) A-III, B-I, C-IV, D-II
- (2) A-II, B-IV, C-III, D-I
- (3) A-I, B-III, C-II, D-IV
- (4) A-IV, B-III, C-I, D-II
- Which of the following factors are favourable for the formation of oxyhaemoglobin in alveoli?
 - (1) Low pCO₂ and High H⁺ concentration
 - (2) Low pCO₂ and High temperature
 - (3) High pO₂ and High pCO₂
 - High pO2 and Lesser H+ concentration

Zoology: Section-B (Q. No. 186 to 200)

186 Given below are two statements:

Statement 1: Bone marrow is the main lymphoid organ where all blood cells including lymphocytes are produced.

Statement II: Both bone marrow and thymus provide micro environments for the development and maturation of T-lymphocytes.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is correct but Statement II is incorrect.
- (2) Statement I is incorrect but Statement II is correct.
- Both Statement I and Statement II are correct.
 - (4) Both Statement I and Statement II are incorrect.

187 Match List I with List II:

List I

List II

- A. P wave
- I. Heart muscles are electrically silent.
- B. QRS complex
- II. Depolarisation of
 - ventricles.
- C. T wave
- III. Depolarisation of
 - atria.
- D. T-P gap
- IV. Repolarisation of ventricles.

Choose the correct answer from the options given below:

- (1) A-II, B-III, C-I, D-IV
 - (2) A-IV, B-II, C-I, D-III
- (3) A-I, B-III, C-IV, D-II
- (4) A-III, B-II, C-IV, D-I

188 Given below are two statements:

Statement I: The cerebral hemispheres are connected by nerve tract known as corpus callosum.

Statement II: The brain stem consists of the medulla oblongata, pons and cerebrum.

In the light of the above statements, choose the most appropriate answer from the options given below:

- Statement I is correct but Statement II is incorrect.
- (2) Statement I is incorrect but Statement II is correct.
- Both Statement I and Statement II are correct.
- (4) Both Statement I and Statement II are incorrect.

189 Match List I with List II:

List I

List II

- A. Unicellular glandular I. Salivary glands epithelium
- B. Compound epithelium II. Pancreas
- C. Multicellular III. Goblet cells of glandular epithelium alimentary canal
- D. Endocrine glandular IV. Moist surface of epithelium buccal cavity

- A-III, B-IV, C-I, D-II
 - (2) A-II, B-I, C-IV, D-III
 - (3) A-II, B-I, C-III, D-IV
 - (4) A-IV, B-III, C-I, D-II

190 Match List I with List II related to digestive system of cockroach.

List I

List II

- A. The structures used for storing of food.
- Gizzard
- B. Ring of 6-8 blind tubules at junction of
- II. Gastric
- foregut and midgut.

 C. Ring of 100-150 yellow
- III. Malpighiar

Caeca

- coloured thin filaments at junction of
- III. Malpighian tubules
- midgut and hindgut.

 D. The structures used
- IV. Crop
- for grinding the food.

Choose the correct answer from the options given below:

- (1) A-IV, B-III, C-II, D-I
- (2) A-III, B-II, C-IV, D-I
- A-IV, B-II, C-III, D-I
 - (4) A-I, B-II, C-III, D-IV
- 191 Match List I with List II:

List I

List II

- A. Mesozoic Era
- I. Lower invertebrates
- B. Proterozoic Era
- II. Fish & Amphibia
- C. Cenozoic Era
- III. Birds & Reptiles
- D. Paleozoic Era
- IV. Mammals

Choose the correct answer from the options given below:

- (1) A-I, B-II, C-IV, D-III
- (2) A-III, B-I, C-IV, D-II
- (3) A-II, B-I, C-III, D-IV
- (4) A-III, B-I, C-II, D-IV
- 1/92

Given below are two statements:

Statement I: Mitochondria and chloroplasts are both double membrane bound organelles.

Statement II: Inner membrane of mitochondria is relatively less permeable, as compared to chloroplast.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is correct but Statement II is incorrect.
- (2) Statement I is incorrect but Statement II is correct.
- (3) Both Statement I and Statement II are correct.
- (4) Both Statement I and Statement II are incorrect.

- 193 As per ABO blood grouping system, the blood group of father is B⁺, mother is A⁺ and child is O⁺. Their respective genotype can be
 - A. $I^{B_i}/I^{A_i}/ii$
 - B. IBIB / IAIA / ii
 - C. $I^{A}I^{B} / iI^{A} / I^{B}i$
 - D. $I^{A}i/I^{B}i/I^{A}i$
 - E. $iI^B / iI^A / I^A I^B$

Choose the most appropriate answer from the options given below:

- (1) C & B only
- (2) D&Eonly
- (3) A only
- (4) Bonly
- 194 Match List I with List II:

List I

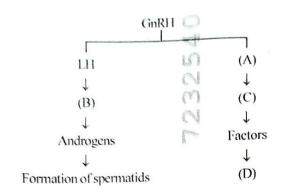
List II

- A. Exophthalmic goiter
- Excess secretion of cortisol, moon face & hyperglycemia
- B. Acromegaly
- Hypo-secretion of thyroid hormone and stunted growth.
- C. Cushing's syndrome
- III. Hyper secretion of thyroid hormone & protruding eye balls.
- D. Cretinism
- IV. Excessive secretion of growth hormone.

Choose the correct answer from the options given below:

II.

- (1) A-III, B-IV, C-II, D-I
- A-III, B-IV, C-I, D-II
 - (3) A-I, B-III, C-II, D-IV
 - (4) A-IV, B-II, C-I, D-III
- 195 Match List I with List II:


List I

List II

- A. RNA polymerase III
- snRNPs
- B. Termination of
 - transcription
- II. Promotor
- C. Splicing of Exons
- III. Rho factor
- D. TATA box
- IV. SnRNAs, tRNA

- (1) A-III, B-IV, C-I, D-II
- (2) A-IV, B-III, C-I, D-II
- (3) A-II, B-IV, C-I, D-III
- (4) A-III, B-II, C-IV, D-I

196 Identify the correct option (A), (B), (C), (D) with respect to spermatogenesis.

(1) FSH, Sertoli cells, Leydig cells, spermatogenesis.

- (2) ICSH, Leydig cells, Sertoli cells, spermatogenesis.
- FSH, Leydig cells, Sertoli cells, spermiogenesis
 - (4) ICSH, Interstitial cells, Leydig cells, spermiogenesis.
- 197 The following are the statements about non-chordates:
 - A. Pharynx is perforated by gill slits.
 - B. Notochord is absent.
 - C. Central nervous system is dorsal.
 - D. Heart is dorsal if present.
 - E. Post anal tail is absent.

Choose the most appropriate answer from the options given below:

- (1) B, D & E only
- (2) B, C & D only
- (3) A & C only
- (4) A, B & D only

- 198 Choose the <u>correct</u> statement given below regarding juxta medullary nephron.
 - Loop of Henle of juxta medullary nephron runs deep into medulla.
 - (2) Juxta medullary nephrons outnumber the cortical nephrons.
 - (3) Juxta medullary nephrons are located in the columns of Bertini.
 - (4) Renal corpuscle of juxta medullary nephron lies in the outer portion of the renal medulla.
- 199 Given below are two statements:

Statement I: Gause's competitive exclusion principle states that two closely related species competing for different resources cannot exist indefinitely.

Statement II: According to Gause's principle, during competition, the inferior will be eliminated. This may be true if resources are limiting.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is true but Statement II is false.
- (2) Statement I is false but Statement II is true.
- (3) Both Statement I and Statement II are true.
- (4) Both Statement I and Statement II are false.
- 200 Regarding catalytic cycle of an enzyme action, select the correct sequential steps:
 - A. Substrate enzyme complex formation.
 - B. Free enzyme ready to bind with another substrate.
 - C. Release of products.
 - D. Chemical bonds of the substrate broken.
 - E. Substrate binding to active site.

- (1) B, A, C, D, E
- (2) E, D, C, B, A
- (3) E, A, D, C, B
- (4) A, E, B, D, C